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ABSTRACT

By combining artificial intelligent concepts with the human
information processing model of Rasmussen, we have
developed a conceptual framework for real-time Al
systems which provides a foundation for system
organization, control and validation. The approach is based
on the description of system processing in terms of an
abstraction hierarchy of states o knowledienand processing
functions which connect those states of knowledge. The
states of knowledge are organized along one dimension
which corresponds to the extent to which the concepts are
expressed in terms of the system inouts or in terms of the
system response. Thus organized, the useful states form a
%enerally triangular shape with the sensors and effectors
orming the lower two vertices and the full evaluated set of
courses of action the apex. If the representations and
processin§ steps in the slopes of this pyramid are correct
and complete, them the processing sequence from inputs to
outputs following the slopes of this pyramid results in
correct behavior.” Unfortunately, this path is generally too
computationally expensive to ormed in real time,
either by natural or artificially intelligent systems. Within
the boundaries of the triangle are numerous processing
paths which shortcut the detailed processing, by connecting
mcomplete levels of analysis to %artially defined responses.
Shortcuts at different levels of abstraction include reflexes,
sensory-motor control, rule-based behavior, and satisficing.
The correctness of shortcuts depends on whether the
te_s%onse inferred on the processing shortcut is consistent
with the responses which would have been inferred by the
computations which are being shortcut. By clarifying
assumptions, relationships, and the knowledge and
processing which is being approximated, this approach
provides a foundation for knowledge acquisition, system
design, and system validation. We have used this approach
in the design of a real-time tactical decision aiding system,
in defining the requirements for an intelligent aiding
system for transport pilots, and in the design of an
autonomous system.

Figure 1 schematically describes the overall processing
steps for a real-time intelligent agent such as a pilot, an
autonomous system, or a real-time aiding system. The
vertical, abstraction, axis in the figure corresponds to the
extent to which the processing is removed from the
concrete sensors and effectors. Movement along the
horizontal axis represents progression of the processing
from the sensors to the effectors. The ovals in the figure
represent states of knowledge, and the labelled arcs
between those states represent processing which
implements the indicated transitions between the states of
knowledge. Different  knowledge representation

requirements are associated with the different states of .

knowledge, and different computational requirements are
associated with the different classes of transitions. The
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particular states of knowledge and processing steps should
not be interpreted as required functional partitions for
particular systems. The actual flow of processing in
nontrivial systems involves many more stages than are
shown, and results will generally be used by several
R;ocessing levels to the right of where they are produced.

any more pathways may exist between the indicated
states of knowledge, and other states of knowledge may be
important for some applications; these other pathways are
summarized by the three classes of shortcuts listed within
the three large arrows.

1. PROCESSING WITHOUT
SHORTCUTS

The discussion in the next 21 paragraphs follows the
information flow in Figure 1 from sensors to effectors,
taking no shortcuts, and altemnating between states of
knowledge and the processing steps which accomplish the
transformations between those states.

Sensors. The sensor state of knowledge is just the sensor
data and other inputs to the intelligent agent. This input
data includes “self’ information from sensors such as
kinesthetic sensors (e.g. actuator positions, velocities,
stresses, and strains), system status data (e.g. self-test and
built-in-test results), and internal environmental sensor data
(e.g. temperatures, pressures, accelerations, flow rates, fuel
3uant1ty, vibration, and power supply voltages). This input

ata  also includes environmental  information
communicated from other agents.

Perception. Perception is the mapping of the sensor data
into symbolic descriptions of the entities and states of
relevance to the intelligent agent. This signal-to-symbol

rocessing includes of all vision processing up to and
including the level of scene description, and all £agnostic
processing up to the level of system status.

Entity and State Descriptions. The ou?)ut of perceptual
processing is a symbolic description of the state of the
agent and its environment. These descriptions could be
represented in terms of instances of archetypical entities
and states, with the attributes refined from the sensor data.
The state descriptions include relationships between
entities, when those relationships can be derived from the
input data.

Assessment. Assessment includes the processing stages in
which the significance of the current situation is derived, in -
terms of the impact of the situation on the agent, its goals, -
plans, and actions. Assessment processing proceeds
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Figure 1. General Information Processing Model witn Shortcuts
through the eneration of successively more abstract action for the intelligent agent. Option descriptions may

descriptions of the situation attributes and of the situation
as a whole.

Situation Descriptions. Situation descriptions are a proper
superset of entity and state descriptions. Because of the
scope of situation descriptions, it may no longer be feasible
to describe situations in terms of single situation types.
Thus situation descriptions may take the form of
interrelated instances o? different situation types, each of
which describes some aspect of the total situation.

Goal Identification. Goals Direct and focus behavior.
Thus while goals may enter at any level before this stage,
they must be defined by the end of this stage, so that the
oals can be used to d¥ive the option identification step.
ile very general static goals such as survival may be
useful in strategic planning, more specific and more near-
term situation-dependent goals are moré effective in
driving behavior. Goal identification proceeds from
assessments of the situation and from more global goals
contained in the plan structure. Since different aspects of
the situation may dictate different goals, resolution of goal
conflicts may be required.

Goals. Goals combine descriptions of future states and
situations and statements of the desirability of those states
and situations. Thus the goal representation language is a
groper superset of the situation representation language.

ince goals involve not only states, but also situations,
actions, and the temporal and other relationships between
states and situations, the rc;presentation for goals shares
many of the characteristics of plans.

Option Identification. With descriptions of the state,
situation, and goals, feasible behavioral options can now be
generateds For the overall processing to be optimal, in the
sense that the overall behavior is the best for attaining the
goals, this processing step must identify all options which
may be optional; however not all options identified need be
optimal.

Options. Options are descriptions of potential courses of
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include state and entity descriptions, situation descriptions,
and goals. Thus the option representation language is a
proper superset of the goal representation language.

Option Evaluation. The option evaluation step is the
detailed application of the goal criteria -against the
identified options. If the options are parametric, then
evaluation can involve generating the members of the sets
represented by the parametric options. This can in
%nncqale produce any number of options to be evaluated.
nless the optimality criteria impose a total ordering on the
courses of action, this set may not be finite. The
technologies of heuristic search differential game theory,
and operations research can each address option evaluation
problems in different domains, but no efficient general
methods for option evaluation are currently known.

Evaluated Options. Unless powerful abstractions,
heuristics, and other means are available for representing
and pruning the space of options, usually only a small set
of the whole family of options can be evafuated. The
evaluated option set may include all of the representations
in the option representation,aflus information, such as total
or partial orderings, and evaluative criteria, resulting from
the evaluation of those options. In order that the behavior
be optimal, all attributes of evaluative interest must be
caﬁmrcd in the representation of the options. .Thus
subsequent representations may be restrictions of this
representation of options, and can only enlarge on the
evaluated options representation by expansion of
abstractions contained in the evaluated options, and only
then when the evaluation of those options does not depend
on the expanded detail.

Alternative Selection. The alternative selection process
may be trivial, if the goals impose a total ordering on the
options, or it may involve the invocation of additional
criteria to select amongst an equivalence class of best
options.

Course of Action. The course of action is a subset of the
evaluated options. If the agent is operating in an uncertain



environment involving unpredictable agents, or other
sources of uncertainty, then the course of action may
include branches to accommodate the generically different
responses during plan execution. Thus the course of action,
like the options, evaluated options, plans, and tasks, may be
represented as a semilattice, with a root representing the
current state, and nodes representing branches and joins of
tasks and situations during possible plan executions. The
course of action may still involve free parameters, or set-
valued parameters, if the values of those parameters was
not required to evaluate the option.

Planning. The planning process is the expansion of the
course of action to the level of the operations to be
performed. Note that many of the computational steps
which would be considered as steps in planning, such as
option identification and evaluation, may have already been
performed to support option evaluation and the selection of
the course of action.

Plan. The plan representation may include entity and state
representations, situation representations, decision criteria,
and alternative options. From a representational standpoint
it is thus equivalent to the evaluated options representation.
The plan differs from that representation in two ways.
First, it is uniformly expanded to the level necessary to
zsi?port resource allocation processing; it thus must include

parallel operations, and detailed models of timing.
Secondly, the plan includes only those options which
passed the alternative selection process. The plan is thus
more detailed than the course of action, but includes fewer
options than the evaluated options.

Resource Allocation. Resource allocation binds specific
resources to specific actions in the plan. Some resource
conflicts may have been resolved earlier in the processing
to evaluate the course of action and to develop the plan; the
resource allocation process completes those allocations.
Resource allocation processing completes the development
of task descriptions to support plan execution.

Tasks. The task representation is the plan representation
expanded to the level of specific tasks for specific

resources. Task descriptions include any parameters, other
than inputs, required by the execution procedures. These
task descriptions include sensing tasks, and decision tasks,
information processing tasks. It may also include enabling
or initiating processing shortcuts such as servo control
processes.

Task Execution. Task execution follows the procedure for
tasks of that “This involves task initiation,
performance monitoring, and parameter adjustment. Task
execution can be influenced by the results from decision
tasks, and by feedback from other running tasks.

Control Commands. The output of the task execution
processing are control commands to the effectors and other
resources. These control commands include all
information other than input data necessary to determine
the operation of those resources. The specific data depends
on the resource controlled.

Control. Control processing may involve servo-loops, or
can operate with limited or no feedback.

Effectors. Effectors include all resources under control of
the agent, including information processing, actuators, and
Sensors.

If all of the processes and representations described above
are complete and correct, and they are to run completion,
then no feedback is, required for the system to produce
correct behavior. However, efficiency can be improved by
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implementing feedback from later processing stages to
control processing at earlier stages. This cascading can
take the form of the integration of later functions into
earlier functions, where it can help narrow the number of
options considered, or it can take the form of specific
information fed back from later stages when those stages
have examined partial results those earlier stages. An
example of the processing of the first sort is the integration
of resource allocation constraints into the option generation
and evaluation stages; an example of the second sort is
feedback from the altemative selection function about
partially evaluated options.

2. SHORTCUT PROCESSING

Figure 1 shows three broad classes of shortcuts - those of
analysis (intent formation), those of intent execution, and a
class of "response” shortcuts which move at various levels
of abstraction from left to right, bridging from partial
analyses to skeletal responses. We currently believe that
;ets‘ponse_ shortcuts are a predominant pathway in human
information processinf. e response shortcuts range in
abstraction from simple servo-control laws linking sensors
and effectors, up through satisficing {Simon, 1969], which
shortcuts exploring all of the courses of action. Shortcuts at
an intermediate level of abstraction are particularly
important in real-time decision making. Situation-response
shortcuts, which move rightward from the vicinity of the
situation description level of analysis to the vicinity of the
tasks level of execution, are described in the companion
%ggr A Situation-Response Model for Intelligent Pilot
ing.

Situation-response processing has a role in the less abstract
skill-based behavior. The pathways in Figure 1 for skill-
based shortcuts proceed nearly horizontally from the
vicinity of sensing and perception to the vicinity of the
effectors. The establishment of such skill-based shortcuts
reduces workload and reduces processing delay by
uncoupling the situation assessment process from the
process of adapting to changing situational parameters. In
our model, the activation and management of skill-based
behavior is one of the normal functions of rule-based
behavior. The situation assessment function then assumes
{)heei) role of enabling the execution of the skill-based
avior.

Both the risks and speed of such shortcut processing are
well known. Interviews with airline pilots revealed the
following example: During aircraft takeoff roll, the pilot-
flying noticed a fluctuation in right en%line readings. Just
before takeoff velocity the pilot-flying heard a loud boom
and felt the plane vibrate. Reflexively he reached to shut

down the right engine (having mentally established its
potential for failure). The pilot-not-flying stop})ed this
move because he had determined that it was the left engine
that had failed. Thus, the processing shortcut (enabled by
the assessment the situation as a possible-right-engine-
problem) resulted in a rapid, but inappropriate response.

Situation-response processing also has an important role in
the more abstract knowledge-based behavior. The normal
pattern is that when the limits of situation-response
processing is reached, knowledge-based reasoning is
mnitiated. Then either the situation changes while the
knowledge-based processing takes place, or the knowledge-
based processing produces a useful result. In either case
the processing reverts to the situation-response model.
Note that in this model situation-response processing serves
as an input filter for knowledge-based processing,
guaranteeing that the scarce knowledge-based processing
resources are only invested in unusual and hence
presumably fruitful problems.



3. CONCLUSIONS

Real-time performance in natural or artiﬁcia.llf' intelligent
systems depends on using the lowest feasible levels of
abstraction. Processes operating at different levels of
abstraction can be organized so that correct behavior can be
implemented using information processing shortcuts. The
shortcut and other levels of processing can be organized so
that less abstract processes develop abstractions for more
abstract processing, and more abstract processing
supervises the less abstract. The development of shortcuts
in the information processing abstraction hierarchy is a
basic mechanism forll)eaming to perform more quickly.
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